
An Exploration in Face Verification 
16-720 Computer Vision Term Project

Wentao Han (whan1@andrew.cmu.edu)  Hang Yuan (hy1@andrew.cmu.edu) Yunjin Wu (yunjinw@andrew.cmu.edu)

Introduction 

General face recognit ion includes both 
verification and identification. In specific, face 
verification is the approach that tries to match a 
known face with an unknown one whereas face 
identification matches two known faces. In our 
project, we implemented two state-of-art face 
verification approaches using hybrid CNN 
model[1] and joint Bayesian techniques[2] 
respect ive ly, and then compared the i r 
performances on the LFW dataset. 

Deep Learning Model 
Model Architecture 

• The weights of the last two convolution layers are 
locally shared to capture high-level features of 
structured objects such as face 

• Each of the 60 ConvNets is trained with images 
from different facial regions that vary in location, 
scale and color type 

• Each type of the facial regions is centered at one 
of the five facial landmarks detected with the work 
of [3] 

Classification RBM 
• Given input, the probability of its output can be 

explicitly expressed as 

  

• The 2-layer RBM is trained with features 
extracted by the ConvNets 

• Top-down fine-tuning of the entire hybrid model is 
not performed due to limited computation 
resources 

Joint Bayesian Model 

Problem description 

Traditional approaches project 2D data to 1-D 
such that the separable joint representation 
becomes inseparable. 

Face formation: 
  

                                and  

• Each face has two latent variables, identity µ 
and inter-personal variations ε. 

• These two variables follow two Gaussian 
distributions with mean of 0. 

Output generation: 

• HI hypothesizes these two images belong to the 
s a m e p e r s o n i n t h e i n t r a - p e r s o n a l 
representation. HE hypothesizes these two 
images belong to

• 60 ConvNets serve as complementary and 
efficient feature extractors 

• 2 stages of average pooling to reduce 
feature dimensionality 

• A 2-layer RBM for classification 
•

ConvNet Architecture 

• Proper kernel size and channel 
number at each stage of 
convolution to guarantee model 
capacity and efficiency

d i f fe ren t peop le in the ex t ra -persona l 
representation. The two covariances matrices 
parameters are computed using an EM-like 
algorithm. 

Results 

• Evaluation follows the unrestricted protocol of 
the LFW dataset 

• Competitive results are reached compared to 
the original works and other state-of-art 
methods 
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x = µ + ε
µ ∼ N(0,Sµ ) ε ∼ N(0,Sε )

r(x1, x2 ) = log(
P(x1, x2 |HI )
P(x1, x2 |HE )
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